(9t^2+4t-6)=(t^2-2t+4)

Simple and best practice solution for (9t^2+4t-6)=(t^2-2t+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9t^2+4t-6)=(t^2-2t+4) equation:



(9t^2+4t-6)=(t^2-2t+4)
We move all terms to the left:
(9t^2+4t-6)-((t^2-2t+4))=0
We get rid of parentheses
9t^2+4t-((t^2-2t+4))-6=0
We calculate terms in parentheses: -((t^2-2t+4)), so:
(t^2-2t+4)
We get rid of parentheses
t^2-2t+4
Back to the equation:
-(t^2-2t+4)
We get rid of parentheses
9t^2-t^2+4t+2t-4-6=0
We add all the numbers together, and all the variables
8t^2+6t-10=0
a = 8; b = 6; c = -10;
Δ = b2-4ac
Δ = 62-4·8·(-10)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{89}}{2*8}=\frac{-6-2\sqrt{89}}{16} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{89}}{2*8}=\frac{-6+2\sqrt{89}}{16} $

See similar equations:

| x=0.3=0.9 | | –4c=–5c+11 | | 82+p=144 | | 3^9=3^7x+8 | | 2(x-1)=50 | | 46a=6 | | 10x=-80x= | | 82=2y | | 10x+300=5x+400 | | 3x)=2(x+3)-30 | | 13/4-28/9=c | | 5x+3=6-4x | | 7n(3-n)=0 | | (4u)+3=5 | | (x)=(-4+2)(-4-8) | | 7h+9=−6 | | 7x-3x-8=27 | | 3=2(6-c)+7c | | 5x+17.56=30.56 | | 7-5x+8=3(5+6x)-12x | | -7(x-6)=-49 | | 3n+8=23 | | 8p-9=-9p5 | | 3x-7=190 | | (9x-12)=(3x+54) | | 95+(7x-4)+90+(9x-6)+(3x+23)=540 | | 100-3x+70=180 | | 2x–10+20=50 | | 3x2-18x+48=0 | | 100+3x-70=180 | | x3=-144 | | 5x+100-4x=90 |

Equations solver categories